
Steps to Build an NFS Server
Check the IP Address on the NFS Server
Steps to Expose NFS in Kubernetes
Remove Unused NFS
Uninstall NFS Service
Connect a Node to NFS Server

Create Shared
Volume with NFS

If you're using a VM or any Linux-based system as the NFS server, you first need to install the NFS
server package.

For Ubuntu/Debian:

Create a directory that will be shared over NFS. For example:

You'll need to configure the NFS exports to specify which directories you want to share and with
which permissions.

Edit the NFS exports file:

Steps to Build an NFS Server
1. Install NFS Server on Linux (VM
or Kubernetes Node)

sudo apt update
sudo apt install -y nfs-kernel-server

2. Create a Directory to Share

sudo mkdir -p /mnt/data
sudo chmod 777 /mnt/data
sudo chown nobody:nogroup /mnt/data

3. Configure NFS Exports

sudo nano /etc/exports

Add the following line to the file, allowing any IP to access the directory (replace * with specific IP
ranges for security):

rw : Allows read-write access.
sync : Ensures data is written to disk before returning a response.
no_subtree_check : Prevents checking the file system for each request (to improve
performance).

After editing the /etc/exports file , export the shared directories with the following command:

To confirm that the export was successful, run:

Start and enable the NFS server to run on boot:

For Ubuntu/Debian:

Log in to the NFS server and verify that the required services are active.

For most systems:

/mnt/data *(rw,sync,no_subtree_check)

4. Export the Shared Directory

sudo exportfs -a

sudo exportfs -v

5. Start NFS Server

sudo systemctl enable nfs-kernel-server
sudo systemctl start nfs-kernel-server

6. Check if the NFS Server Service
is Running

Ensure that the required NFS ports are open on the NFS server and accessible from the client.

Check the NFS Ports:

Look for services like nfs , mountd , and portmapper in the output.

Example:

If you're using a firewall, open the necessary ports to allow NFS traffic. The typical ports used for
NFS are 2049 (NFS) and 111 (RPC).

For UFW (Ubuntu firewall):

From another machine (which will act as the client), test the NFS share.

Mount the NFS share to a local directory (replace nfs-server-ip with the IP of the NFS server):

sudo systemctl status nfs-server

Test Port Accessibility

sudo rpcinfo -p

 program vers proto port service
 100000 4 tcp 111 portmapper
 100005 1 udp 20048 mountd
 100003 3 tcp 2049 nfs

7. Open Ports in Firewall (if
applicable)

sudo ufw allow from any to any port nfs

8. Test the NFS Share

sudo mount -t nfs nfs-server-ip:/mnt/data /mnt

You should now be able to read and write files to the /mnt/data directory over NFS.

If you have direct access to the NFS server, run the following command to find its IP address:

Use ip Command:

Look for the network interface connected to your local network (e.g., eth0, ens0, or
similar).
Example output:

Use hostname -I :

This will display all IP addresses assigned to the server.

Check the IP Address on the
NFS Server

ip addr show

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group default qlen 1000
 inet 192.168.1.10/24 brd 192.168.1.255 scope global eth0

hostname -I

Now that you have the NFS server set up, you can use it as shared storage in your Kubernetes
cluster.

Create a PersistentVolume resource in Kubernetes that points to your NFS server. Here's an example
YAML:

Steps to Expose NFS in
Kubernetes

1. Create the Persistent Volume
(PV)

apiVersion: v1
kind: PersistentVolume
metadata:
 name: nfs-pv
spec:
 capacity:
 storage: 10Gi
 accessModes:
 - ReadWriteMany
 persistentVolumeReclaimPolicy: Retain
 nfs:
 path: /mnt/data # Path to the directory on NFS server
 server: <nfs-server-ip> # Replace with the NFS server's IP address

2. Create the Persistent Volume
Claim (PVC)

Next, create a PersistentVolumeClaim (PVC) to request the shared volume:

Finally, mount the PersistentVolumeClaim into your pod as follows:

Apply the PersistentVolume , PersistentVolumeClaim , and Pod configurations:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: nfs-pvc
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 10Gi

3. Use the PVC in a Pod

apiVersion: v1
kind: Pod
metadata:
 name: nfs-client-pod
spec:
 containers:
 - name: nfs-client-container
 image: busybox
 command: ["sleep", "3600"]
 volumeMounts:
 - mountPath: "/mnt/data"
 name: nfs-volume
 volumes:
 - name: nfs-volume
 persistentVolumeClaim:
 claimName: nfs-pvc

4. Apply the Configuration

Once the Pod is running, verify that the NFS share is mounted inside the container:

You should see /mnt/data mounted and showing the space usage of the NFS share.

kubectl apply -f nfs-pv.yaml
kubectl apply -f nfs-pvc.yaml
kubectl apply -f nfs-client-pod.yaml

5. Verify the Setup

kubectl exec -it nfs-client-pod -- df -h

To remove or delete an unused NFS export entry that you no longer need, you can follow these
steps:

First, identify the export entry you want to remove by running exportfs -v with sudo :

This command will list all the NFS exports currently configured on your system.

To remove an NFS export entry, you use the exportfs command with the -u option followed by the
path of the export. Here’s the general syntax:

Replace export_path with the path you want to remove from the NFS exports.
-u option is used to unexport (remove) the specified export path.

For example, if you see an export like /mnt/nfs_share *(rw,fsid=0,sync,no_subtree_check) that you want to
remove, you would use:

Restart NFS Service: After removing the export entry, restart the NFS server to apply changes:

Remove Unused NFS

Identify the Export Entry

sudo exportfs -v

Remove the Export Entry

sudo exportfs -u [options] export_path

sudo exportfs -u /mnt/nfs_share

Restart NFS Service

sudo systemctl restart nfs-server

Verify Removal

After running the exportfs -u command, you can verify that the export entry has been removed by
running exportfs -v again:

The entry you removed should no longer appear in the list of NFS exports.

Make sure to review the list of NFS exports carefully before removing any entry to avoid
unintentionally deleting important configurations.
Changes made with exportfs are immediate and affect NFS clients accessing the exports.
Ensure any necessary changes are communicated if NFS exports are actively used.

By following these steps, you can effectively remove an unused NFS export entry from your system
using exportfs on Ubuntu or any Linux distribution that supports NFS.

sudo exportfs -v

Additional Notes

To uninstall NFS (Network File System) on Ubuntu, you need to remove the NFS server components
and any associated configuration. Here’s how you can do it:

1. Stop NFS Services: First, stop the NFS server services to prevent them from running:

sudo systemctl stop nfs-server

2. Remove NFS Packages: Use apt to remove the NFS server packages. The specific
package names might vary depending on your Ubuntu version and NFS setup. Typically,
you may have packages like nfs-kernel-server :

sudo apt purge nfs-kernel-server

3. Clean Up Configuration Files: After purging the packages, you can clean up any
remaining configuration files:

sudo apt autoremove

If you also want to remove NFS client components:

1. Stop NFS Client Services:

sudo systemctl stop nfs-client.target

2. Remove NFS Client Packages: Again, the package names might vary, but typically it
includes nfs-common :

sudo apt purge nfs-common

3. Clean Up Configuration Files:

sudo apt autoremove

Uninstall NFS Service

Uninstall NFS Server Components

Uninstall NFS Client Components
(Optional)

After performing the above steps, NFS should be uninstalled from your system. You can verify by
checking if NFS-related services are stopped and if the packages are no longer installed:

Configuration Files: If you have customized configuration files (/etc/exports for NFS
server or /etc/fstab for NFS mounts), you may want to manually remove or restore them as
needed.
Data and Shares: Uninstalling NFS does not delete any data stored on NFS shares.
Ensure you have backed up any critical data before uninstalling if necessary.

By following these steps, you can uninstall NFS server and client components from your Ubuntu
system effectively. Adjust the package names as needed based on your specific installation.

Verify Removal

sudo systemctl status nfs-server # Check NFS server status (should show inactive or not found)
sudo systemctl status nfs-client # Check NFS client status (if applicable)
dpkg -l | grep nfs # Check if NFS packages are listed (should be empty)

Additional Considerations

1. Install NFS Client Utilities (if not already installed): Ensure that NFS client utilities
are installed on the client node. Install them if needed:

sudo apt update
sudo apt install nfs-common

2. Mount NFS Share: Create a directory on the client node where you want to mount the
NFS share (e.g., /mnt/nfs_client):

sudo mkdir -p /mnt/nfs_client

3. Mount the NFS Share: Mount the NFS share from the server to the client directory:

Replace server_ip with the IP address of your NFS server.

sudo mount -t nfs server_ip:/mnt/nfs_share /mnt/nfs_client

4. Verify Mount: Check that the NFS share is mounted correctly:

mount | grep nfs

5. Automount NFS Share (Optional): If you want the NFS share to be mounted
automatically on boot, you can add an entry to /etc/fstab on the client node:

Save the file and run:

server_ip:/mnt/nfs_share /mnt/nfs_client nfs defaults 0 0

sudo mount -a

6. Reload daemon

systemctl daemon-reload

Create a file on the NFS share from the client node to ensure read and write permissions
are correctly set up:

Connect a Node to NFS
Server

Testing the NFS Mount

echo "Test file" | sudo tee /mnt/nfs_client/test.txt

Check if the file appears on the NFS server at /mnt/nfs_share .

By following these steps, you should be able to connect another node (client) to your NFS server
and access shared directories. Adjust the IP addresses, paths, and configuration options (rw , sync ,
etc.) according to your specific setup and security requirements.

