
Clone and Push Source Code
Create Public SSH Key
Error when Push Source Code
Directory Permission
Create Dedicated User for Gitea
Deploying Gitea on Docker

Opensource Git
Server with Gitea

To clone and push code to your self-hosted Gitea instance running on Kubernetes, you'll need to
use the SSH service exposed by Gitea. Here's how to do it:

First, ensure your SSH key is added to Gitea so that you can use it for Git operations (clone, push,
etc.).

1. Access the Gitea web interface at your custom domain.
2. Log in to your Gitea account.
3. Go to Settings > SSH Keys > Add Key.
4. Paste your public SSH key in the provided field and save.

Once your SSH key is added, you can clone repositories using SSH.

Get the SSH URL for your repository:
Navigate to the repository in Gitea.
Click the Clone button.
Copy the SSH URL (e.g., git@git.introvesia.com:username/repository.git).

Clone the repository: On your local machine, run:

Replace username/repository.git with the actual repository path.

After cloning the repository, you can push your local changes to it.

Clone and Push Source Code

1. Setup SSH Access

Steps to Add SSH Key in Gitea:

2. Clone a Repository

git clone git@<domain>:username/repository.git

3. Push Code to the Repository

1. Navigate to the cloned repository directory
cd repository

This will push your changes to the master branch (replace with the appropriate branch name if
needed).

If you want to avoid typing the full SSH URL every time, you can set up an SSH config file:

1. Open or create the SSH config file:

2. Add the following to it:

Now you can clone and push using a shorter URL, like:

If you're accessing Gitea's SSH service through Kubernetes, ensure you're using the correct NodeIP
and port, as exposed by the NodePort service:

The SSH port will be Node-IP:32222 (or the port you set in the service definition).

2. Make changes to your code and commit them:
git add .
git commit -m "Your commit message"

3. Push the changes to Gitea:
git push origin master

4. SSH Configuration (Optional)

nano ~/.ssh/config

Host <domain>
 User git
 HostName <domain>
 Port 22
 IdentityFile ~/.ssh/id_rsa # Path to your private key

git clone git:username/repository.git

Accessing SSH via Kubernetes (if needed)

1. Open Git Bash
2. Paste the text below, replacing the email used in the example with your GitHub email

address.

If you are using a legacy system that doesn't support the Ed25519 algorithm, use:

This creates a new SSH key, using the provided email as a label.

When you're prompted to "Enter a file in which to save the key", you can press Enter to accept the
default file location. Please note that if you created SSH keys previously, ssh-keygen may ask you
to rewrite another key, in which case we recommend creating a custom-named SSH key. To do so,
type the default file location and replace id_ALGORITHM with your custom key name.

3. At the prompt, type a secure passphrase.

Create Public SSH Key

ssh-keygen -t ed25519 -C "your_email@example.com"

ssh-keygen -t rsa -b 4096 -C "your_email@example.com"

Generating public/private ed25519 key pair.
Enter file in which to save the key (/c/Users/<user>/.ssh/id_ed25519):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /c/Users/<user>/.ssh/id_ed25519
Your public key has been saved in /c/Users/<user>/.ssh/id_ed25519.pub
The key fingerprint is:
SHA256:<code> <email>
The key's randomart image is:
+--[ED25519 256]--+
| ..+.. oo. |
| =E= .o . |
| oo=o... o |
| ..Bo=.+ . |
| +.S.* + |
| . + * = . |
| o * + |
| +o= . |

| ..o++. |
+----[SHA256]-----+

The error you're seeing is related to a Git push issue, where the data being pushed exceeds the
allowed size for HTTP requests. Specifically, the HTTP 413 error indicates that the request is too
large, and it can happen when pushing large commits or files.

The most common fix is to increase the buffer size for Git's HTTP operations. You can do this by
configuring Git with a larger buffer size on your local machine.

Run this command to increase the Git HTTP buffer size:

Error when Push Source
Code
The error message

> git push origin main:main
error: RPC failed; HTTP 413 curl 22 The requested URL returned error: 413
send-pack: unexpected disconnect while reading sideband packet
fatal: the remote end hung up unexpectedly
Everything up-to-date

Solution Steps
1. Increase Git HTTP Buffer Size

git config --global http.postBuffer 524288000 # 500MB

2. Configure Gitea to Allow Larger Pushes
(Optional)

If increasing the buffer on your client doesn't work, you may need to adjust the settings in Gitea to
allow larger pushes.

If you're using the default Gitea deployment, this file is located in the Gitea container or in
the /data/gitea/conf/ directory (depending on your setup).
Look for the [server] section and set the following options:

If your Gitea pod has limited CPU or memory, it might be throttling large requests. You can
increase the resource limits for the Gitea pod in your Kubernetes deployment configuration.

For example, add resource limits in the deployment YAML:

Apply the changes with:

1. Edit the Gitea configuration (app.ini):

[server]
; Max size for HTTP upload, in MB
MAX_UPLOAD_SIZE = 1024

2. Restart Gitea to apply the configuration changes:
kubectl rollout restart deployment gitea -n git

3. Increase Kubernetes Resource Limits
(Optional)

resources:
 requests:
 memory: "512Mi"
 cpu: "500m"
 limits:
 memory: "2Gi"
 cpu: "1"

kubectl apply -f gitea-deployment.yaml

4. Push in Smaller Batches

If the file you're pushing is very large, you can try pushing smaller commits or files in batches to
avoid hitting the request size limit.

Run the git push origin main:main command again.
If the problem persists, check if you are pushing very large files. You can use Git LFS
(Large File Storage) for handling large binary files in your repository.

After Applying Changes

The "Permission denied" error you're encountering indicates that the user running the Gitea service
does not have sufficient permissions to create directories or files in the specified location (
/data/gitea/log). This issue typically occurs due to incorrect file or directory permissions.

To resolve this issue, follow these steps:

1. Check Current Ownership and Permissions: First, verify the current ownership and
permissions of the /data/gitea directory and its subdirectories:

ls -ld /data/gitea
ls -l /data/gitea/log

2. Change Ownership to Gitea User: If Gitea is running under a specific user (e.g., gitea),
change the ownership of the directory and its contents to this user:

sudo chown -R gitea:gitea /data/gitea

3. Adjust Permissions: Set appropriate permissions to allow the gitea user (or the user
running Gitea) to read, write, and execute in the directories:

sudo chmod -R 755 /data/gitea

4. Retry Gitea Operations: Restart or retry the operation that caused the permission
denied error in Gitea.

If you need more granular permissions control, you can use ACLs to grant specific permissions to
the Gitea user:

1. Install ACL Package (if not already installed):

sudo apt update
sudo apt install acl

Directory Permission

Option 1: Adjust Directory Ownership and
Permissions

Option 2: Use ACLs (Access Control Lists)

2. Set ACLs on the Directory:

This command grants read, write, and execute permissions recursively (-R) to the gitea
user (u:gitea:rwx) on /data/gitea and sets the default ACL (-d) so that any new files or
directories inherit these permissions.

sudo setfacl -R -m u:gitea:rwx /data/gitea
sudo setfacl -d -R -m u:gitea:rwx /data/gitea

3. Verify ACLs: Check the ACLs to ensure they are correctly applied:

getfacl /data/gitea

4. Retry Gitea Operations: Restart or retry the operation that caused the permission
denied error in Gitea.

SELinux or AppArmor: If your system uses SELinux or AppArmor, ensure that their
policies allow Gitea to access the necessary directories.
Gitea Configuration: Double-check the configuration files (app.ini or similar) to ensure
they are correctly pointing to /data/gitea/log for logging.

By following these steps, you should be able to resolve the "Permission denied" issue for Gitea and
allow it to create directories and files as required. Adjust the ownership, permissions, or ACLs
according to your specific security and access requirements.

Additional Considerations

1. Isolation: By creating a separate user and group (gitea), you isolate Gitea's files and
processes from other system users and applications. This isolation enhances security by
limiting access to Gitea-related resources only to the gitea user and group.

2. Security: Assigning specific permissions to the gitea user and group allows you to control
exactly what Gitea can access and modify on your system. This reduces the risk of
unintended modifications or security breaches.

3. Standardization: Using a dedicated user and group (gitea) for Gitea installations
promotes consistency and standardization across different deployments. It simplifies
management and troubleshooting, especially in environments with multiple applications
and users.

4. Compatibility: Many applications and services, including Gitea, are designed to run
under a specific user and group for optimal compatibility and security configurations.

Here’s how you can create the gitea user and group on your system:

-r flag creates a system group, which is often preferred for service-related accounts.

-r flag creates a system user, suitable for service accounts.
-g gitea assigns the gitea group as the primary group for the user.

Create Dedicated User for
Gitea
Benefits of Creating a Dedicated User and
Group (gitea):

Steps to Create gitea User and Group:

1. Create the gitea Group:
sudo groupadd -r gitea

2. Create the gitea User:
sudo useradd -r -g gitea -d /var/lib/gitea -s /bin/bash gitea

-d /var/lib/gitea specifies the home directory for the gitea user (adjust as needed).
-s /bin/bash sets the default shell for the gitea user (adjust as needed).

Ensure that directories and files relevant to Gitea (e.g., /var/lib/gitea , /data/gitea , or specific paths
you use) are owned by the gitea user and group (gitea:gitea). Adjust permissions as necessary to
allow Gitea to read, write, and execute where required.

NFS Server: Set permissions and ownership (chown and chmod) for directories shared
with NFS to be accessible by the gitea user and group.
NFS Client (Gitea Server): Mount NFS shares using options (uid , gid) that correspond
to the gitea user and group (gitea:gitea), ensuring that Gitea has proper access to the
shared directories.

Creating a dedicated user and group (gitea) specifically for Gitea installations enhances security,
isolation, and compatibility with other services. It’s a recommended practice to follow when setting
up applications like Gitea on your system, ensuring clear separation of privileges and streamlined
management. Adjust configurations based on your specific deployment needs and security policies
to achieve optimal performance and security for Gitea and other applications.

3. Set Permissions:

Example Usage in NFS Setup:

Conclusion:

Deploying Gitea on Docker involves setting up the Gitea application along with a database
backend. Here’s a step-by-step guide to deploy Gitea using Docker Compose:

Create a docker-compose.yml file to define the services (Gitea and MySQL in this case):

Deploying Gitea on Docker

Step 1: Prepare Docker Compose File

version: '3'

services:
 server:
 image: gitea/gitea:latest
 environment:
 - USER_UID=1000 # Replace with your host user UID if necessary
 - USER_GID=1000 # Replace with your host group GID if necessary
 restart: always
 volumes:
 - ./gitea:/data
 ports:
 - "3000:3000"
 - "2222:22" # SSH port (optional, adjust as needed)
 depends_on:
 - db
 networks:
 - gitea_network

 db:
 image: mysql:5.7
 environment:
 MYSQL_DATABASE: gitea
 MYSQL_USER: gitea
 MYSQL_PASSWORD: password
 MYSQL_ROOT_PASSWORD: root_password
 volumes:

Gitea (server service):
image : Pulls the latest Gitea Docker image.
environment : Sets user UID and GID for file permissions (adjust if necessary).
volumes : Mounts a local directory ./gitea to persist Gitea data.
ports : Maps container ports 3000 (HTTP) and 2222 (SSH) to host ports (adjust as
needed).
depends_on : Ensures the db service starts before Gitea.
networks : Connects to a custom bridge network gitea_network .

MySQL (db service):
image : Pulls the MySQL 5.7 Docker image.
environment : Sets MySQL database name, user, and passwords.
volumes : Mounts a local directory ./mysql to persist MySQL data.
restart : Always restarts the MySQL container if it stops unexpectedly.
networks : Connects to the gitea_network for communication with Gitea.

Run the following command in the directory containing your docker-compose.yml file:

This command starts both Gitea and MySQL containers in detached mode (-d), allowing them to
run in the background.

After deployment, access Gitea through your browser at http://localhost:3000 . Replace localhost with
your server's IP address or domain name if accessing remotely.

 - ./mysql:/var/lib/mysql
 restart: always
 networks:
 - gitea_network

networks:
 gitea_network:
 driver: bridge

Step 2: Configure Docker Compose File

Step 3: Deploy Gitea

docker-compose up -d

Step 4: Access Gitea

Follow the on-screen instructions to complete the initial setup of Gitea, including setting up an
admin account and configuring basic settings.

Data Persistence: Data for Gitea and MySQL will persist in local directories ./gitea and
./mysql . Adjust paths and volumes as needed.
Customization: Customize environment variables and ports according to your specific
requirements.
Security: Consider securing Gitea with HTTPS using Nginx or another reverse proxy and
obtaining SSL/TLS certificates.

This setup provides a basic deployment of Gitea using Docker Compose. Modify as per your
environment and security requirements for production use.

Step 5: Initial Setup

Notes:

