
An index is a data structure that allows the database to find and retrieve specific rows much faster
than scanning the entire table. Think of it like the index in a book, which helps you quickly locate a
topic without reading every page.

Indexes reduce the amount of data the database needs to scan:
Without an index: The database performs a full table scan, checking each row. With an
index: The database can quickly locate the rows matching the query criteria.

Primary Index: Automatically created on the primary key.
Unique Index: Ensures that all values in a column are unique.
Composite Index: An index on multiple columns.
Full-Text Index: Optimized for text searching.
Clustered Index: Sorts the table data based on the index, improving range queries.
Non-Clustered Index: Stores pointers to the actual data, useful for specific lookups.

Frequently queried columns: Columns used in WHERE, JOIN, ORDER BY, or GROUP BY
clauses.
Foreign key columns: To speed up joins.
Large tables: To avoid full table scans.

In SQL, you can create an index using:

Table Indexing

1. What is Indexing?

2. How Indexing Improves Query
Performance

3. Types of Indexes

4. When to Use Indexes

5. Creating Indexes



For a composite index:

Avoid too many indexes: Indexes use extra storage and slow down INSERT, UPDATE, and
DELETE operations.
Choose columns wisely: Index columns that are frequently searched or sorted.
Use composite indexes appropriately: Order matters in composite indexes. For example,
an index on (column1, column2) can be used for queries involving column1 or both, but
not for column2 alone.
Monitor and fine-tune: Use tools like EXPLAIN or EXPLAIN PLAN to analyze query execution
and understand how indexes are being used.
Index maintenance: Periodically rebuild or reorganize indexes for optimal performance.

Run the query with EXPLAIN to check if indexes are being used effectively:

This will show whether the database uses an index or performs a full table scan.

Storage overhead: Each index takes up additional disk space.
Slower write operations: Every INSERT, UPDATE, or DELETE requires updating the indexes.
Complexity in maintenance: Indexes require periodic maintenance to prevent
fragmentation.

By strategically applying indexes and monitoring their effectiveness, you can significantly speed up
query performance in your database.

CREATE INDEX index_name ON table_name (column_name);

CREATE INDEX index_name ON table_name (column1, column2);

6. Best Practices

7. Analyzing Query Performance

EXPLAIN SELECT * FROM table_name WHERE column_name = 'value';

8. Downsides of Indexing

Revision #1
Created 15 November 2024 02:39:07 by Ahmad
Updated 15 November 2024 05:17:18 by Ahmad


