
Charmed Kubernetes is a fully automated, model-driven approach to installing and managing
Kubernetes from bare-metal to the cloud. Build your Kubernetes cloud from the ground up,
integrate it with your favorite tools, and create multi-cloud topologies.

These instructions represent the complete set of commands you need to enter into your terminal to
install Charmed Kubernetes on AWS.

LXD is a system container and VM hypervisor that allows you to create a local cloud. It can be
installed via a snap package.

LXD provides an interactive dialogue to configure your local cloud during the initialisation
procedure:

The init script itself may vary depending on the version of LXD. You can use most default options in
the dialogue. The important configuration options for Charmed Kubernetes are:

Networking: Do NOT enable ipv6 networking on the bridge interface
Storage Pool: Use the ‘dir’ storage type

Running result:

Multi-node Clusters

Charmed Kubernetes installs CNCF-
certified Kubernetes clusters across clouds

1. Install LXD

sudo snap install lxd --classic

2. Initialise LXD

lxd init

Name of the new storage pool [default=default]:
Name of the storage backend to use (dir, lvm, powerflex, zfs, btrfs, ceph) [default=zfs]: dir
Would you like to connect to a MAAS server? (yes/no) [default=no]:

Juju is a tool for deploying, configuring and operating complex software on public or private clouds.
It can be installed with a snap:

The Juju controller is used to manage the software deployed through Juju, from deployment to
upgrades to day-two operations. One Juju controller can manage multiple projects or workspaces,
which in Juju are known as ‘models’.

Juju comes preconfigured to work with LXD. A cloud created by using LXD containers on the local
machine is known as localhost to Juju. To begin, you need to create a Juju controller for this cloud:

Running result:

Would you like to create a new local network bridge? (yes/no) [default=yes]:
What should the new bridge be called? [default=lxdbr0]:
What IPv4 address should be used? (CIDR subnet notation, “auto” or “none”) [default=auto]:
What IPv6 address should be used? (CIDR subnet notation, “auto” or “none”) [default=auto]:
Would you like the LXD server to be available over the network? (yes/no) [default=no]:
Would you like stale cached images to be updated automatically? (yes/no) [default=yes]:
Would you like a YAML "lxd init" preseed to be printed? (yes/no) [default=no]:

3. Install Juju

sudo snap install juju --classic

4. Add juju controller

juju bootstrap localhost

Creating Juju controller "localhost-localhost" on localhost/localhost
Looking for packaged Juju agent version 3.6.0 for amd64
Located Juju agent version 3.6.0-ubuntu-amd64 at https://streams.canonical.com/juju/tools/agent/3.6.0/juju-
3.6.0-linux-amd64.tgz
To configure your system to better support LXD containers, please see:
https://documentation.ubuntu.com/lxd/en/latest/explanation/performance_tuning/
Launching controller instance(s) on localhost/localhost...
 - juju-77ea8f-0 (arch=amd64)
Installing Juju agent on bootstrap instance
Waiting for address
Attempting to connect to <ipv4-address>:22
Attempting to connect to [<ipv6-address>]:22
Connected to <ipv6-address>

The model holds a specific deployment. It is a good idea to create a new one specifically for each
deployment.

Remember that you can have multiple models on each controller, so you can deploy multiple
Kubernetes clusters or other applications.

Running result:

Deploy the Kubernetes bundle to the model. This will add instances to the model and deploy the
required applications. This can take up to 20 minutes depending on your machine.

Running result:

Running machine configuration script...
Bootstrap agent now started
Contacting Juju controller at <ipv4-address> to verify accessibility...

Bootstrap complete, controller "localhost-localhost" is now available
Controller machines are in the "controller" model

Now you can run
 juju add-model <model-name>
to create a new model to deploy workloads.

5. Add a Kubernetes model

juju add-model k8s

Added 'k8s' model on localhost/localhost with credential 'localhost' for user 'admin'

6. Deploy Kubernetes

juju deploy charmed-kubernetes

Located bundle "charmed-kubernetes" in charm-hub, revision 1267
Located charm "calico" in charm-hub, channel latest/stable
Located charm "containerd" in charm-hub, channel latest/stable
Located charm "easyrsa" in charm-hub, channel latest/stable
Located charm "etcd" in charm-hub, channel latest/stable
Located charm "kubeapi-load-balancer" in charm-hub, channel latest/stable
Located charm "kubernetes-control-plane" in charm-hub, channel latest/stable
Located charm "kubernetes-worker" in charm-hub, channel latest/stable

Executing changes:
- upload charm calico from charm-hub for base ubuntu@22.04/stable from channel stable with
architecture=amd64
- deploy application calico from charm-hub on ubuntu@22.04/stable with stable
 added resource calico
 added resource calico-arm64
- set annotations for calico
- upload charm containerd from charm-hub for base ubuntu@22.04/stable from channel stable with
architecture=amd64
- deploy application containerd from charm-hub on ubuntu@22.04/stable with stable
 added resource containerd
- set annotations for containerd
- upload charm easyrsa from charm-hub for base ubuntu@22.04/stable from channel stable with
architecture=amd64
- deploy application easyrsa from charm-hub on ubuntu@22.04/stable with stable
 added resource easyrsa
- set annotations for easyrsa
- upload charm etcd from charm-hub for base ubuntu@22.04/stable from channel stable with
architecture=amd64
- deploy application etcd from charm-hub on ubuntu@22.04/stable with stable
 added resource core
 added resource etcd
 added resource snapshot
- set annotations for etcd
- upload charm kubeapi-load-balancer from charm-hub for base ubuntu@22.04/stable from channel stable with
architecture=amd64
- deploy application kubeapi-load-balancer from charm-hub on ubuntu@22.04/stable with stable
 added resource nginx-prometheus-exporter
- expose all endpoints of kubeapi-load-balancer and allow access from CIDRs 0.0.0.0/0 and ::/0
- set annotations for kubeapi-load-balancer
- upload charm kubernetes-control-plane from charm-hub for base ubuntu@22.04/stable from channel stable
with architecture=amd64
- deploy application kubernetes-control-plane from charm-hub on ubuntu@22.04/stable with stable
 added resource cni-plugins
- set annotations for kubernetes-control-plane
- upload charm kubernetes-worker from charm-hub for base ubuntu@22.04/stable from channel stable with
architecture=amd64
- deploy application kubernetes-worker from charm-hub on ubuntu@22.04/stable with stable
 added resource cni-plugins
- expose all endpoints of kubernetes-worker and allow access from CIDRs 0.0.0.0/0 and ::/0

Juju is now busy creating instances, installing software and connecting the different parts of the
cluster together, which can take several minutes. You can monitor what’s going on by running:

To view the last twenty log messages for the “k8s” model:

Congratulations! You have a Kubernetes cluster up and running - now let’s use it!

- set annotations for kubernetes-worker
- add relation kubernetes-control-plane:loadbalancer-external - kubeapi-load-balancer:lb-consumers
- add relation kubernetes-control-plane:loadbalancer-internal - kubeapi-load-balancer:lb-consumers
- add relation kubernetes-control-plane:kube-control - kubernetes-worker:kube-control
- add relation kubernetes-control-plane:certificates - easyrsa:client
- add relation etcd:certificates - easyrsa:client
- add relation kubernetes-control-plane:etcd - etcd:db
- add relation kubernetes-worker:certificates - easyrsa:client
- add relation kubeapi-load-balancer:certificates - easyrsa:client
- add relation calico:etcd - etcd:db
- add relation calico:cni - kubernetes-control-plane:cni
- add relation calico:cni - kubernetes-worker:cni
- add relation containerd:containerd - kubernetes-worker:container-runtime
- add relation containerd:containerd - kubernetes-control-plane:container-runtime
- add unit easyrsa/0 to new machine 0
- add unit etcd/0 to new machine 1
- add unit etcd/1 to new machine 2
- add unit etcd/2 to new machine 3
- add unit kubeapi-load-balancer/0 to new machine 4
- add unit kubernetes-control-plane/0 to new machine 5
- add unit kubernetes-control-plane/1 to new machine 6
- add unit kubernetes-worker/0 to new machine 7
- add unit kubernetes-worker/1 to new machine 8
- add unit kubernetes-worker/2 to new machine 9
Deploy of bundle completed.

7. Monitor the deployment

watch -c juju status --color

juju debug-log -m k8s -n 20

8. Start using your cluster!

Revision #3
Created 1 December 2024 08:11:46 by Ahmad

Updated 1 December 2024 08:45:01 by Ahmad

